S.Y.B.Sc. Computer Science Theory Paper I Semester – 1 CS 211- DATA STRUCTURES USING 'C' (Compulsory Course)

Total Lectures: 48 Objective:

- 1. To learn the systematic way of solving problem
- 2. To understand the different methods of organizing large amount of data
- 3. To efficiently implement the different data structures
- 4. To efficiently implement solutions for specific problems

Prerequisites: Knowledge of C Programming Language

1. Introduction to data structures [3]

- 1.1 Concept
- 1.2 Data type, Data object, ADT
 - 1.2.1 Data Type
- 1.2.2 Data Object
 - 1.2.3 ADT -Definition, Operation, examples on rational number
 - 1.3 Need of Data Structure
 - 1.4 Types of Data Structure

2. Algorithm analysis [2]

- 2.1 Algorithm definition, characteristics
- 2.2 Space complexity, time complexity
- 2.3 Asymptotic notation (Big O, Omega Ω)

3. Linear data structures [6]

- 3.1 Introduction to Arrays array representation
- 3.2 Sorting algorithms with efficiency
 - Bubble sort, Insertion sort, Merge sort, Quick Sort
- 3.3 Searching techniques –Linear Search, Binary search

4. Linked List [8]

- 4.1 Introduction to Linked List
- 4.2 Implementation of Linked List Static & Dynamic representation,
- 4.3 Types of Linked List
- 4.4 Operations on Linked List
 - create, display, insert, delete, reverse, search, sort, concatenate &merge
- 4.5 Applications of Linked List polynomial manipulation
- 4.6 Generalized linked list Concept and Representation

5. Stacks [6]

- 5.1 Introduction
- 5.2 Representation- Static & Dynamic
- 5.3 Operations
- 5.4 Application infix to postfix, infix to prefix, postfix evaluation,
- 5.5 Simulating recursion using stack

6. Queues [4]

- 6.1 Introduction
- 6.2 Representation Static & Dynamic
- 6.3 Operations
- 6.4 Circular queue, priority queue (with implementation)
- 6.5 Concept of doubly ended queue

7. Trees [12]

- 7.1 Concept & Terminologies
- 7.2 Binary tree, binary search tree
- 7.3 Representation Static and Dynamic
- 7.4 Operations on BST create, Insert, delete, traversals (preorder, inorder, postorder), counting leaf, non-leaf & total nodes , non recursive inorder traversal
- 7.5 Application Heap sort
- 7.6 Height balanced tree- AVL trees- Rotations, AVL tree examples.

8. Graph [7]

- 8.1 Concept & terminologies
- 8.2 Graph Representation Adjacency matrix, adjacency list, inverse Adjacency list, adjacency multilist, orthogonal list
- 8.3 Traversals BFS and DFS
- 8.4 Applications AOV network topological sort, AOE network critical path

References:

- 1. Fundamentals of Data Structures ---- By Horowitz Sahani (Galgotia)
- 2. Data Structures using C and C++ --- By YedidyahLangsam, Aaron M. Tenenbaum, Moshe J. Augenstein
- 3. Introduction to Data Structures using C---By Ashok Kamthane
- 4. Data Structures using C --- Bandopadhyay&Dey (Pearson)
- 5. Data Structures using C --- By Srivastava BPB Publication.

S.Y.B.Sc. Computer Science Theory Paper I Semester II CS 221 -Object Oriented Concepts using C++

Total Lectures: 48

Objective:-

1. Acquire an understanding of basic object oriented concepts and the issues involved in effective class design

2. Write C++ programs that use object oriented concepts such as information hiding, constructors, destructors, inheritance etc.

Prerequisites: Knowledge of C Programming Language

1. Object oriented concepts [2]

- 1.1 Object oriented concepts
- 1.2 Features, advantages and Applications of OOPS

2. Introduction to C++ [6]

- 2.1 Data types, new operators and keywords, using namespace concept
- 2.2 Simple C++ Program
- 2.3 Introduction to Reference variables
- 2.4 Usage of 'this' pointer
- 2.5 Classes and Objects
- 2.6 Access specifiers
- 2.7 Defining Data members and Member functions
- 2.8 Array of objects

3. Function in C++ [8]

- 3.1 Call by reference, Return by reference
- 3.2 Function overloading and default arguments
- 3.3 Inline function
- 3.4 Static class members
- 3.5 Friend Concept Function, Class

4. Constructors and destructor [4]

- 4.1 Types of constructors
- 4.2 Memory allocation (new and delete)
- 4.3 Destructor

5. Operator overloading [4]

- 5.1 Overloading Unary and Binary operators
- 5.2 Overloading using friend function
- 5.3 Type casting and Type conversion

6. Inheritance [8]

- 6.1 Types of inheritance with examples
- 6.2 Constructors and destructor in derived classes
- 6.3 Virtual base classes, Virtual functions and Pure virtual function
- 6.4 Abstract base classes

7. Managing Input and Output using C++ [4]

- 7.1 Managing console I/O
- 7.2 C++ stream classes
- 7.3 Formatted and unformatted console I/O
- 7.4 Usage of manipulators

8. Working with files [6]

- 8.1 File operations Text files, Binary files
- 8.2 File stream class and methods
- 8.3 File updation with random access
- 8.4 Overloading insertion and extraction operator

9. Templates [4]

- 9.1 Introduction to templates
- 9.2 Class templates, function templates and overloading of function templates
- 9.3 Templates with multiple parameters

10. Exception Handling in C++ [2]

10.1 try, catch and throw primitives

Reference Books: -

- 1. Object Oriented Programming with C++ by Robert Lafore
- 2. Object Oriented Programming with C++ by E. Balagurusamy
- 3. Object Oriented Modeling and Design by James Rumbough
- 4. The Complete Reference C++ by Herbert Schildt
- 5. Let us C++ by YashwantKanitkar
- 6. Mastering C++ by Venugopal, T Ravishankar, RajkumarTHM Pub.

7. Trouble free C++ by HarimohanPande, ANE publication